What Is This?

This is an HTML+RDFa representation of metadata describing this Web-addressable resource.

Why Is This Important?

The property (attributes and values pairs) links on this page unveil a different kind of link, one which enables the following on HTTP networks such as the Web:

  1. Unambiguous identity for entities (aka. strong identifiers)
  2. Implicit binding of an entity and its metadata via strong identifiers
  3. Multiple metadata representations that enable a variety of presentations
  4. High precision Search and Find queries that simply use the metadata documents (by referencing entity URIs) as the query's Data Source Name

How Do I Discover Alternative Metadata Representations?

This document exposes metadata in the following formats: (X)HTML+RDFa, Turtle, N3, RDF/JSON, or RDF/XML. In the most basic form, you can simply view the (X)HTML source markup of this page, and go directly to the <head/> section which contains a <link/> tag with relationship and type properties for each format.

In addition, you can also explicitly request a desired metadata representation for a given resource via HTTP GET requests that use the entity's strong identifier as the call target.

How Can I Expose My Web Resources In This Manner?

Simply include the following in the <head/> section of your (static or dynamically generated) (X)HTML page:

<link rel="alternate" title="My Data in RDF Linked Data form"
type="application/rdf+xml"
href="http://linkeddata.uriburner.com/about/id/<this-page-URL>/>"

How Is This Related To The Linked Data Meme?

As stated above, the links in this page expose strong identifiers for its primary topic, secondary topics, attributes, and some values. These links, via implicit association, act as conduits to their metadata-bearing documents, in a variety formats.

[OpenLink Software]

About: Planar Curves - Numericana

An Entity of Type : Thing, from Data Source : http://www.numericana.com/answer/curve.htm, within Data Space : dev.restore.ovi.cnr.it:8890

  • References
  • Referenced By
content

Creator
  • Gerard Michon
Description
  • A catalog of famous planar curves. Discussion of a few special curves and splines.
Title
  • Planar Curves - Numericana
Subject
  • geometry, planar curves, radius of curvature, stationary point, inflexion point, inflection points, confocal conic sections, parabola, parabolic arc, hyperbola, ellipse, witch of Agnesi, versiera, associated circle, curvilinear abscissa, curvilinear absissa, catenary, chainette, Descartes ovum, Cassini ovals, Cassinian oval, lemniscate of Bernoulli, Bezier cubic spline, Pierre Bezier cubics, parabolic arc, piecewise circular curve, intrinsic equation, quadratrix of Hippias of Elis, trisectrix of Hippias, Hippias quadratrix, constructible points, staightedge and compass, compass alone, Euphorbus, Euphorbe, Mohr-Mascheroni contructions, Mohr-Mascheroni theorem, Jakob Steiner's inversion
links to
  • https://en.wikipedia.org/wiki/Evolute
  • https://en.wikipedia.org/wiki/Involute
  • https://en.wikipedia.org/wiki/Dandelin_spheres
  • https://en.wikipedia.org/wiki/Hyperbolic_spiral
  • https://en.wikipedia.org/wiki/Neusis_construction
  • http://www.numericana.com/answer/curve.htm#lemniscate
  • https://en.wikipedia.org/wiki/Catenary
  • http://www.numericana.com/answer/curve.htm#catenary
  • http://www.numericana.com/answer/curve.htm#cassini
  • http://www.numericana.com/answer/curve.htm#limacon
  • http://www.numericana.com/answer/curve.htm#ovum
  • http://www.numericana.com/answer/curve.htm#envelope
  • http://www.numericana.com/answer/curve.htm#evolute
  • http://www.numericana.com/answer/curve.htm#involute
  • http://www.numericana.com/answer/curve.htm#parallel
  • http://www.numericana.com/answer/curve.htm#nephroid
  • http://www.numericana.com/answer/curve.htm#freeth
  • http://www.numericana.com/answer/curve.htm#bezier
  • http://www.numericana.com/answer/curve.htm#volute
  • http://www.numericana.com/answer/curve.htm#intrinsic
  • http://www.numericana.com/answer/curve.htm#osculating
  • http://www.numericana.com/answer/calculus.htm#parabola
  • http://www.numericana.com/answer/gears.htm#ellipses
  • http://www-history.mcs.st-andrews.ac.uk/Curves/Curves.html
  • http://www.2dcurves.com
  • http://curvebank.calstatela.edu/famouscurves/famous.htm
  • http://poncelet.math.nthu.edu.tw/disk3/cabrijava/compass.html
  • https://www.youtube.com/watch?v=kAyAADExL9Q
  • http://answers.yahoo.com/question/index?qid=20080819132427AAfFxDn
  • http://www.geometrie.tugraz.at/wallner/h_ivory.pdf
  • https://en.wikipedia.org/wiki/Germinal_Pierre_Dandelin
  • http://www.numericana.com/fame/bio.htm#morton
  • mailto:jsouther55@sbcglobal.net 
  • http://www-history.mcs.st-andrews.ac.uk/Curves/Hyperbolic.html
  • http://mathworld.wolfram.com/HyperbolicSpiral.html
  • http://www.numericana.com/answer/calculus.htm#deriv
  • http://www-history.mcs.st-andrews.ac.uk/Biographies/Jungius.html
  • http://www.numericana.com/arms/index.htm#jefferson
  • http://members.aol.com/jeff570/c.html
  • https://www.youtube.com/watch?v=AYIQYZuQNMw
  • http://www-history.mcs.st-andrews.ac.uk/Curves/Tractrix.html
  • https://en.wikipedia.org/wiki/Tractrix
  • https://en.wikipedia.org/wiki/Pseudosphere#Tractricoid
  • https://en.wikipedia.org/wiki/Luigi_Guido_Grandi
  • http://www.numericana.com/answer/curve.htm#multipolar
  • http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Pascal_Etienne.html
  • https://en.wikipedia.org/wiki/Envelope...atics)#Envelope_of_a_family_of_curves
  • http://www.numericana.com/answer/gears.htm#involute
  • https://en.wikipedia.org/wiki/Richard_A._Proctor
  • http://www.daviddarling.info/encyclopedia/N/nephroid.html
  • http://www-history.mcs.st-andrews.ac.uk/Curves/Nephroid.html
  • http://mathworld.wolfram.com/Nephroid.html
  • http://freethnotes.net/wiki/tiki-index.php?page=Thomas+Jacob+Freeth+1819
  • http://www-history.mcs.st-andrews.ac.uk/Curves/Freeths.html
  • http://mathworld.wolfram.com/FreethsNephroid.html
  • http://www.flutterby.com/archives/1999_Dec/7_DeadPierreBezier.html
  • http://www.cnam.fr
  • mailto:gelsus@verizon.net 
  • http://www.numericana.com/fame/giants.htm#hippieas
  • http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Heath.html
  • http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Archytas.html
  • https://www.youtube.com/watch?v=hoh4TmPzu1w
  • http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Mascheroni.html
  • http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Mohr.html
  • http://www.geocities.com/robinhuiscool/mascheroni.html
  • http://www.numericana.com/answer/curve.htm#circumcenter
  • http://www.numericana.com/answer/curve.htm#doubling
  • https://en.wikipedia.org/wiki/Tait%E2%80%93Kneser_theorem
  • https://en.wikipedia.org/wiki/Adolf_Kneser
  • https://arxiv.org/abs/1207.5662
  • https://www.genealogy.math.ndsu.nodak.edu/id.php?id=165741
  • https://en.wikipedia.org/wiki/Sergei_Tabachnikov
  • http://www.numericana.com/arms/index.htm#descartes
  • https://en.wikipedia.org/wiki/Adolphe_Quetelet
  • https://en.wikipedia.org/wiki/%C3%89tienne_Ghys
  • https://en.wikipedia.org/wiki/Peter_Tait_(physicist)
  • http://www.numericana.com/answer/geometry.htm#centrarc
  • http://www.numericana.com/answer/geometry.htm#areas
  • http://www.numericana.com/answer/geometry.htm#ellipticarc
  • http://www.numericana.com/answer/geometry.htm#conic
  • http://www.numericana.com/answer/geometry.htm#centroid
  • http://www.numericana.com/answer/geometry.htm#focus
  • http://www.numericana.com/answer/formula.htm
  • http://www.numericana.com/answer/curvature.htm#basic
  • http://www.numericana.com/answer/culture.htm#polygons
  • http://www.numericana.com/arms/index.htm#cassini
  • http://www.numericana.com/answer/counting.htm#pascal
  • http://www.numericana.com/answer/surface.htm
  • http://www.numericana.com/
  • http://www.numericana.com/answer/index.htm
  • http://www.numericana.com/answer/units.htm
  • http://www.numericana.com/answer/counting.htm
  • http://www.numericana.com/answer/geometry.htm
  • http://www.numericana.com/answer/algebra.htm
  • http://www.numericana.com/answer/trig.htm
  • http://www.numericana.com/answer/calculus.htm
  • http://www.numericana.com/answer/functions.htm
  • http://www.numericana.com/answer/analysis.htm
  • http://www.numericana.com/answer/sets.htm
  • http://www.numericana.com/answer/numbers.htm
  • http://www.numericana.com/answer/recreational.htm
  • http://www.numericana.com/answer/misc.htm
  • http://www.numericana.com/answer/culture.htm
  • http://www.numericana.com/answer/physics.htm
  • mailto:g.michon@att.net 
  • http://www.numericana.com/arms/index.htm#fermat
  • http://www.numericana.com/arms/michon.htm
  • http://www.numericana.com/answer/symbol.htm#halmos
  • http://www.numericana.com/answer/humor.htm
  • http://www.numericana.com/answer/ellipse.htm
  • http://michon.info
  • http://www.numericana.com/answer/vectors.htm
  • http://www.numericana.com/answer/algebra.htm#complex
  • http://www.numericana.com/answer/matrix.htm
  • http://www.numericana.com/answer/modularity.htm#elliptic
  • http://www.numericana.com/fame/giants.htm#fermat
  • http://www.numericana.com/answer/info/fairuse.htm
  • http://www.numericana.com/fame/giants.htm#agnesi
  • http://www.numericana.com/fame/giants.htm#apollonius
  • http://www.numericana.com/fame/giants.htm#beltrami
  • http://www.numericana.com/fame/giants.htm#bernoulli
  • http://www.numericana.com/fame/giants.htm#jbernoulli
  • http://www.numericana.com/fame/giants.htm#galileo
  • http://www.numericana.com/fame/giants.htm#hamilton
  • http://www.numericana.com/fame/giants.htm#hippias
  • http://www.numericana.com/fame/giants.htm#huygens
  • http://www.numericana.com/fame/giants.htm#leibniz
  • http://www.numericana.com/fame/giants.htm#plato
  • http://www.numericana.com/fame/giants.htm#steiner
  • http://www.numericana.com/fame/giants.htm#varignon
  • http://www.numericana.com/answer/culture.htm#earliest
  • http://www.numericana.com/answer/curve.htm#hippias
  • http://www.numericana.com/answer/constants.htm#delian
  • http://www.numericana.com/answer/curve.htm#archspir
  • http://www.numericana.com/answer/curve.htm#confocal
  • http://www.numericana.com/answer/curve.htm#parabola
  • http://www.numericana.com/answer/curve.htm#mohr
  • http://www.numericana.com/answer/calculus.htm#cycloid
  • http://www.numericana.com/arms/descartes.htm
  • http://www.numericana.com/answer/calculus.htm#integration
  • http://www.numericana.com/answer/curve.htm#agnesi
  • http://www.numericana.com/answer/symbol.htm#infinity
  • http://www.numericana.com/arms/index.htm#pascal
  • http://www.numericana.com/arms/index.htm#huygens
  • http://www.numericana.com/arms/leibniz.htm
  • http://www.numericana.com/answer/curve.htm#varignon
  • http://www.numericana.com/arms/index.htm#bernoulli
  • http://www.numericana.com/answer/miracles.htm#gaussian
  • http://www.numericana.com/answer/optimize.htm#cycloid
  • http://www.numericana.com/arms/index.htm#agnesi
  • http://www.numericana.com/answer/geometry.htm#constructible
  • http://www.numericana.com/answer/curve.htm#inversion
  • http://www.numericana.com/answer/curvature.htm#gauss
  • http://www.numericana.com/answer/curve.htm#tractrix
  • http://www.numericana.com/answer/calculus.htm#distributions
  • http://www.numericana.com/arms/index.htm
  • http://www.numericana.com/answer/visitors.htm
  • http://www.numericana.com/answer/curve.htm#straight
  • http://www.numericana.com/answer/curve.htm#folium
  • http://www.numericana.com/answer/calculus.htm#area
primary topic
  • http://www.numericana.com/answer/curve.htm
Alternative Linked Data Views: Facets | iSPARQL | ODE     Raw Linked Data formats: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD
This material is Open Knowledge   W3C Semantic Web Technology     This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 07.20.3231, on Linux (x86_64-generic_glibc25-linux-gnu), Single Edition